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ABSTRACT

Viral hepatitis is a disease caused by five known 
types of virus and can be chronic or acute. This 
study collected historical data on hepatitis in the 
southern states of Brazil and applied Markov Chains 
as an input parameter for predicting cases, using 
Artificial Neural Networks (ANN). A comparison 
was then made between the method that includes 
the two methodologies and the prediction made by 
ANN using only the data from the historical series. 
The mean absolute error (MAE) and mean absolute 
percentage error (MAPE) were calculated to deter-
mine the best forecasting model for each state. It 
was not possible to determine a configuration that 
simultaneously presented the best MAE and MAPE 
values for each state, but it was found that the low-
est errors were obtained by using Markov Chains as 
an information generator for the ANN models, with 
a MAPE of 4.45% using the Levenberg-Marquardt 
training algorithm, with a delay equal to 3 and a 
number of neurons equal to 60.
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RESUMO

As hepatites virais são doenças causadas por cinco tipos conhecidos de vírus, podendo apresentar qua-
dros crônicos ou agudos. O presente estudo coletou dados históricos acerca de hepatite nos estados do 
sul do Brasil e aplicou Cadeias de Markov como parâmetro de entrada para previsão de casos, por meio 
de Redes Neurais Artificiais (RNA). Comparou-se então método que contempla as duas metodologias 
com a previsão realizada por RNA considerando apenas os dados da série histórica. Calculou-se o erro 
médio absoluto (MAE) e erro percentual médio absoluto (MAPE) para determinar qual o melhor modelo 
de previsão referente a cada estado. Não foi possível determinar uma configuração que apresentasse 
simultaneamente os melhores valores de MAE e MAPE para cada estado, mas constatou-se que os me-
nores erros foram obtidos com emprego de Cadeias de Markov como um gerador de informações para 
os modelos de RNA, chegando a apresentar MAPE de 4,45% por meio do algoritmo de treinamento de 
Levenberg- Marquardt, com delay igual a 3 e número de neurônios igual a 60.

PALAVRAS-CHAVE

Cadeias de Markov; Hepatite; Redes Neurais Artificiais.

RESUMEN

La hepatitis viral es una enfermedad causada por cinco tipos conocidos de virus, y puede presentar 
afecciones crónicas o agudas. El presente estudio recolectó datos históricos sobre hepatitis en los es-
tados del sur de Brasil y aplicó las Cadenas de Markov como parámetro de entrada para la predicción 
de casos por medio de Redes Neuronales Artificiales (RNA). A continuación, se comparó un método que 
contempla las dos metodologías con la predicción realizada por ARN, considerando solo los datos de las 
series históricas. Se calculó el error absoluto medio (MAE) y el error porcentual absoluto medio (MAPE) 
para determinar el mejor modelo de predicción para cada estado. No fue posible determinar una con-
figuración que presentara simultáneamente los mejores valores de MAE y MAPE para cada estado, pero 
se encontró que los menores errores se obtuvieron con el uso de cadenas de Markov como generador de 
información para los modelos de ARN, alcanzando un MAPE de 4.45% mediante el algoritmo de entre-
namiento de Levenberg-Marquardt.  con un retraso de 3 y un número de neuronas de 60.
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1 INTRODUCTION

Technological advances, boosted by the evolution of electronic components, have led to the ap-
plication of methodologies for analyzing data and aiding decision- making, especially those that use 
computer systems to carry out this analysis. As a result of these advances, numerous models have 
emerged or have been enhanced (SANTOS et al., 2005; SOUZA FILHO et al., 2020). 

Among the numerous existing methods, one that stands out is the application of Artificial Neural 
Networks (ANN), which have a certain similarity to the human mind, i.e. a learning stage for subse-
quent application (KWON et al., 2018; SOUZA FILHO et al., 2020). This mathematical model has great 
potential, especially because of its wide range of applications. The demand for these decision-making 
methods is growing in the health sector, in order to help with forecasting and strategic decision-
-making (NAKAJIMA et al., 2017; RUBIN et al., 2018; ZHANG et al., 2018; HERNESNIEMI et al., 2019; 
MORTAZAVI et al., 2019). 

The synergy between areas of health and data analysis has proven to be of paramount importance 
and has potential for exploitation, as explained by Hernesniemi et al. (2019). Numerous examples of 
application can be found in the literature, especially in helping to develop new diagnostic means and 
new prognostic approaches (ZERON et al., 2019; GONÇALVES et al., 2020). 

Viral hepatitis, a globally prevalent liver disease caused by various viruses, presents a complex epi-
demiological profile. Its diverse etiologies, including hepatitis A, B, C, D, and E, each with distinct trans-
mission modes, clinical manifestations, and disease progression, pose significant challenges for public 
health management (GOULART et al., 2006; FARIAS et al., 2019). The identification of factors influen-
cing the spread of these infections is crucial for developing effective prevention and control strategies. 
Mathematical modeling offers a powerful tool to analyze epidemiological patterns, predict disease out-
breaks, and evaluate the impact of interventions (ZERON et al., 2019; GONÇALVES et al., 2020). 

This study aims to construct an optimal Artificial Neural Network (ANN) model, incorporating 
Markov Chain principles, to forecast hepatitis incidence in the southern Brazilian states of Paraná, 
Rio Grande do Sul, and Santa Catarina. By leveraging data-driven approaches, we seek to improve 
understanding of hepatitis transmission dynamics and inform public health policies.

1.1 Theoretical framework
This chapter is divided into two stages to review the literature on the subjects covered throughout 

the article: Markov Chains (MC) and Artificial Neural Networks (ANN). The combined application of 
MC and ANN demonstrates significant potential for enhancing the prediction of viral hepatitis cases. 
By capturing complex patterns in data, these models can enable more accurate forecasting, leading 
to improved disease management and public health interventions.

1.1.1 Markov Chains 
The model proposed by Markov is one of the stochastic models (a model that evolves over time, 

based on a probability), a special property of which is the fact that the future state is linked to the 
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current state (by probabilistic means), without a dependence on events in the past state (HILLIER et 
al., 2013; ROSHAN et al., 2018). This is defined as a Markovian property, and a stochastic process with 
this characteristic has been classified as a Markov chain (HILLIER et al., 2013). A given Markov Chain 
can be represented by the transition matrix, where the probabilities of changing state (i to state j) over 
a certain period of time is represented in Equation 1 by pij (TAHA, 2007; HILLIER et al., 2013). 

                           (1)                           (1)

1.1.2 Artificial Neural Networks 
A prominent model in Artificial Intelligence, ANNs have been used by mathematical means to 

reproduce the neurons of the brain, with the aim of acquiring knowledge through experience and sto-
ring this learning, making it possible to apply it to a given situation (HAYKIN et al., 2003; TAHA, 2007; 
BITTAR et al., 2020). Among the various ANN models, the multi-layer ones stand out when it comes 
to solving non-stationary time series (BRAGA et al., 2007; BORSATO et al., 2019; LIU et al., 2019). 
This method consists of an input layer of the model, plus an output layer, and may have one or more 
intermediate layers - these layers help in the design of the learning algorithm and operation (BRAGA 
et al., 2007; BORSATO et al., 2019). 

Synaptic weights are also assigned in order to weight this activation function (FERNEDA et al., 
2006; BRAGA et al., 2007; OLIVEIRA et al., 2012). For the aforementioned mathematical method, two 
stages are required: definition of the model’s architecture (taking into account layout - layers and 
neurons - and activation function) and validation (comparison carried out after training with a series 
not used in the development (OLIVEIRA et al., 2012; FERNEDA et al., 2006). The performance of the 
ANN model can be verified according to the mean absolute percentage error (MAPE) and the mean 
absolute error (MAE), represented by Equations 2 and 3 (MAPUWEI et al., 2020).

       (2)   (2)

                (3)

       (2)   (2)

                (3)

Where, n represents the number of evaluation periods, yt is the actual value for the period (t) e ei is 
the difference between the actual value and the forecast value for the i-th period. These errors together 
help in the search for the model with the smallest difference between the expected and actual values. 
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2 METHODS

This work sought to define, using Artificial Neural Networks and Markov Chains, a model for pre-
dicting hepatitis cases in the southern states of Brazil. To this end, the steps described in this chapter 
were followed. 

2.1 Data collection 
The data for each state analyzed (Rio Grande do Sul, Paraná, and Santa Catarina) were obtained 

from the DATASUS database, Brazil’s Unified Health System’s Department of Informatics. DATASUS is 
a reliable source for epidemiological studies, collecting, processing, and providing comprehensive he-
alth data. Accessing the TABNET system in September 2020, we gathered data from all three southern 
Brazilian states. This data spanned 12 years (2007-2018), collected monthly from healthcare settings. 

Data were collected considering the number of individuals with confirmed infection per month 
(Jan-Dec), for each year, over the 12-year period. Without distinguishing between hepatitis virus 
types, we analyzed the total number of cases, providing a general overview of the disease. Annual 
databases were created for each state, allowing for monthly assessments and tracking the historical 
evolution of hepatitis cases across these Brazilian states.

2.2 Markov Chains application 
The following sections describe the method used to apply Markov Chains in order to obtain the tran-

sition matrix and then the steady-state probabilities for Rio  Grande do Sul, Santa Catarina and Paraná. 

2.3 Definition of transition bands and construction of the transition matrix
The data obtained from DATASUS was grouped together in a spreadsheet, taking into account 

the percentage variation over time. Subsequently, the ranges used in the study were divided up and 
defined according to their occurrences. A total of 7 ranges were created in order to provide greater 
visualization of the changes in intervals. These ranges are shown in chart 1. After classifying the tran-
sition ranges for the data obtained, the quantity matrix was constructed by adding up each transition 
identified in the spreadsheet. The sums are counted in a new matrix, which is named according to its 
indication, i.e. the quantity of each occurrence (variation). 

Chart 1 – Classification of variations range

Percentage Range

Below -20,0001% A

-20 to -10,0001% B

-10 to -5,0001% C

-5 to -0,0001% D
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Percentage Range

0 to 4,9999% E

5 to 9,99% F

Above 10% G
Source: Created by authors.

By providing a measure of the dispersion of the data around a central value, the variation intervals can 
be applied to the elements of a transition matrix, thus obtaining a better understanding of the dynamics of 
the system and the uncertainty associated with the transition probabilities. Therefore, this step resulted in 
the transition matrix, which reflects the probability of a change of state in a given period of time.

2.4 Ann application 
When comparing ANN models that use different approaches to forecasting time series, it is poin-

ted out that single-variable models only consider the historical data of the series in question, while 
multivariable models incorporate additional information, such as probabilities derived from MC. To 
optimize the performance of the models, various calculation configurations were tested within the 
scikit-learn library of the Python programming language, including the number of neurons, the num-
ber of delays and different training algorithms (Levenberg-Marquardt, Bayesian Regularization and 
Scaled Conjugate Gradient). The main objective is to identify the combination of hyperparameters 
and algorithm that results in the lowest prediction error for each time series, allowing the most ap-
propriate model to be chosen for each case. In this way, it is possible to verify how useful the model is 
for use in projecting cases in epidemiology.

Monovariable ANN models were developed, considering only the historical series, while multiva-
riable models incorporated both the historical data and the probabilities derived from the application 
of Markov Chains. The optimal number of neurons was then determined by creating ANNs with the 
number of neurons varying from 10 to 100 in increments of 10. Tests were then carried out with delay 
numbers from 2 to 10, in order to obtain the lowest error for each time series, and then 3 training 
algorithms were tested. These are Levenberg-Marquardt (LM), Bayesian Regularization (BR) e Scaled 
Conjugate Gradiente (SCG). The LM model can be described using the following Equation 4 (HAMZA-
ÇEBI et al., 2017; LIMA et al., 2020):

  (4)

Where: J is the Jacobian matrix that receives and controls the fi rst errors of the ANN and 𝜇 
is the learning rate. The BR model is described by Equation 5, where M is the practical form of 
the model and D is the training data set. This model is based on Bayes’ rule (LIMA et al., 2020):
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         (5)         (5)

The SCG technique described in Equations 6 and 7 is suitable for solving large-scale proble-
ms (LIMA et al., 2020).

         (6)

                         (7)

         (6)

                         (7)

Subject to:

Considering 𝑠𝑘 as second-order information, 𝛼𝑘 step size, 𝐸” and 𝐸� are the second and first deri-
vatives of the error function with reference to the weight vectors, 𝑑𝑘 represents the temporal weight 
vector, with variation over the period k, being 𝑑𝑇 the tranpose matrix of 𝑑k (HAMZAÇEBI et al., 2017).

2.5 Metrics evaluation 
In order to determine the best of the methods presented in the study, the MAPE and MAE were 

used, applying Equations 2 and 3 respectively. The results of the application, the best models found 
and their errors are presented in Chapter 4. 

3 RESULTS

To create and develop the ANN models, training models were evaluated for the data from each 
state, varying the number of neurons and delays, as presented in the methodology. The historical 
data series was taken into account, as well as data from the application of Markov Chains. As a 
result, 231,660 data points from this simulation were analyzed - 143 data points for each of the 
270 different configurations tested per state (two predictions are added to these, considering the 
application of Markov Chains and ANN or just the latter applied to the historical series), for a total 
of 1620 different configurations. 
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Tables 1 and 2 show the MAPE and MAE results, considering the model evaluation metrics, for 
the three lowest values in each state. It can be seen that in no case was a model found that obtained 
the lowest values for both metrics simultaneously. The tables show the configurations used in the 
algorithm, as well as the metric values obtained for each one. The Model column shows the training 
algorithm used: LM, BR and SCG. It can be seen that the Levenberg-Marquardt model showed the 
lowest MAPE and MAE values for the three states, always varying the number of neurons and delays. 

Table 1 – Lowest MAPE values for each state, including models, delays and neurons used

State
MAPE

Model Delay Neurons MAPE no 
Markov

MAPE with 
Markov Model Delay Neurons

Rio Grande do Sul LM 10 30 12,2% 4,4% LM 3 60

LM 9 70 12,3% 5,3% LM 4 80

SCG 8 90 12,7% 5,5% LM 4 30

Santa Catarina LM 3 80 7,4% 4,4% LM 6 70

LM 3 60 7,6% 4,8% LM 7 90

BR 4 70 8,4% 4,8% LM 6 40

Parana LM 2 100 6,4% 5,5% LM 4 20

BR 2 50 8,7% 5,8% LM 5 30

LM 2 80 8,8% 5,8% LM 5 40
Source: Research data.

Table 2 – Lowest MAE values for each state, including models, delays and neurons used

State
MAE

Models Delay Neurons MAE no 
Markov

MAE with 
Markov Model Delay Neurons

Rio Grande do Sul LM 10 30 28,7% 21,9% LM 8 100

LM 8 30 31,6% 22,1% LM 4 30

LM 2 100 42,5% 22,7% LM 8 40

Santa Catarina LM 3 80 17,4% 12,7% LM 6 70

LM 3 60 18,3% 13,5% LM 6 40

LM 3 70 20,5% 13,6% LM 7 90



Sa
úd

e 
e 

Am
bi

en
te

Interfaces Científicas • Aracaju • V.9 • N.3 • p. 745 - 759 • Fluxo Contínuo • 2024 • 753 •

State

MAE

Models Delay Neurons MAE no 
Markov

MAE with 
Markov Model Delay Neurons

Parana LM 2 100 17,5% 15,1% LM 4 20

LM 2 80 23% 15,4% LM 5 40

BR 2 50 23,9% 15,9% LM 5 30
Source: Research data.

It can be seen that the lowest values are found in the models that took Markov Chains into account 
(‘with Markov’ in the table). This shows that the use of this input parameter did in fact improve the 
forecast result. Table 3 shows the results obtained with the models, considering the average MAPE 
for each state and a comparison between the methods (with the application of Markov Chains, or 
considering only the historical data series. The values given in brackets in the figure legends refer to 
the configuration used: number of delays and neurons. The LM training algorithm was used for these 
models (as it showed the best results among the configurations). 

Table 3 – Comparison of average errors

Average MAPE for training algorithm

Rio Grande do Sul Santa Catarina Paraná

Model LM BR SCG LM BR SCG LM BR SCG

No Markov 19,3% 14,4% 18,1% 15,5% 12,8% 15,9% 23% 21,3% 28,1%

With Markov 18,5% 9,7% 17,9% 16,7% 7,6% 15,8% 25,8% 12,1% 27,7%

Source: Research data.

An analysis of the average errors shows that they are closer to the real values when we look 
at the models using Markov Chains. One detail that stands out is the constant incidence of lower 
errors in the Bayesian Regularization model, although the lowest MAE and MAPE values were not 
achieved by this configuration, which corroborates the data presented above and reinforces that 
different models should be analyzed for studies of this type. Figure 1 shows the graphical diagram 
relating the number of people diagnosed with viral hepatitis in each state in southern Brazil (RS, SC 
and PR) over the time horizon considered.
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Figure 1 – Graphical representation of the forecast of new cases of viral hepatitis

Source: Research data.

The lowest mean absolute percentage error values, considering the use of Markov Chains, were 4.45%, 
4.46% and 5.58% for Rio Grande do Sul, Santa Catarina and Paraná. In turn, for the same sequence of 
states, the models without Markov Chains showed MAPEs of 12.27%, 7.47% and 6.46%. These values 
were obtained using the Levenberg-Marquardt training algorithm, but each with a different configuration. 

The variability observed in the data, characterized by peaks and falls, is the result of the interaction 
of various complex factors, such as epidemic outbreaks, changes in the population’s behavioral pat-
terns and fluctuations in climatic conditions. The heterogeneity between states, in turn, reflects the 
particularities of each context, including vaccination coverage, access to health services and the habits 
of the population. The analysis of the prediction errors (MAPE and MAE), which were low, suggests that 
the prediction algorithm was successful in evaluating the artificial intelligence models on the existing 
data, so the projections are considered effective. However, it is important to note that the effectiveness 
of public health interventions depends not only on the accuracy of the forecasts, but also on the respon-
siveness of health systems and the implementation of appropriate control measures.

4 DISCUSSION

The tools used in this study demonstrate the potential to analyze vast data sets, uncovering com-
plex patterns and providing accurate predictions about the occurrence of new cases. The scientific 
literature already recognizes the value of mathematical models in predicting infectious diseases and 
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optimizing the management of health systems. Nucita et al. (2013). presents a similar innovative 
approach to the epidemiological study of HIV using tools from artificial intelligence, whose main 
contribution lies in the application of MC to real data from electronic medical records to simulate the 
dynamics of the HIV epidemic at district level. 

By analyzing large volumes of data from electronic medical records and other repositories, the-
se models make it possible to identify patterns, predict trends and assess the impact of different 
interventions. However, there are limitations regarding the quality of the data collected in order to 
build robust and reliable models. Collecting accurate and complete data, free from bias, is a complex 
challenge, especially in health systems with varied infrastructures. Incomplete, inconsistent or faulty 
data can lead to inaccurate results and impair decision-making.

The application of MC in epidemiological studies, though not as common as traditional methods like 
Poisson regression, Age-Period-Cohort (APC) models, ARIMA, and Bayesian APC, has shown promise in 
capturing the temporal dynamics of disease spread. For example, studies such as Roshan et al. (2018) 
have utilized Markov Chains to assess extreme heat stress probabilities, demonstrating the model’s ap-
plicability to public health data. Similarly, Nucita et al. (2013) has highlighted the effectiveness of MC 
in modeling HIV spread in specific districts. However, its application to Brazilian public health data, es-
pecially for diseases like hepatitis, is still underexplored, representing an area ripe for further research. 

Markov Chains differ from other epidemiological models in several ways. For instance, unlike Pois-
son models that assume event independence and constant rate over time, Markov Chains explicitly 
model the probability of transitioning from one state to another, which can be more appropriate for 
diseases with clear stages or states. ARIMA models, on the other hand, are designed for time series 
data but may struggle with non-linear dynamics where MC could offer better insights. Bayesian APC 
models incorporate prior information, which can be powerful, but may require more extensive data 
than MC models. The flexibility of MC to handle different types of transitions makes it a valuable tool 
in the context of epidemiological modeling, though it may not always capture the full complexity of 
age or cohort effects as well as APC models.

5 CONCLUSIONS

This study successfully constructed and evaluated an optimal Artificial Neural Network (ANN) mo-
del that incorporates Markov Chain principles to forecast hepatitis incidence in the southern Brazi-
lian states of Paraná, Rio Grande do Sul, and Santa Catarina. By applying these advanced data-driven 
approaches, the research has significantly improved our understanding of the transmission dynamics 
of hepatitis in these regions. The results indicate that the integration of Markov Chains with ANNs 
enhances predictive accuracy compared to models relying solely on historical data, as demonstrated 
by the reduction in Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) values. 

Transition matrices were obtained for each state, and multiple models were simulated to determi-
ne the best forecasting method, confirming that no single model consistently performed best across 
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all metrics. However, the use of Markov Chains as input parameters for ANN clearly led to superior 
forecasting outcomes. This improvement in forecasting capability has important implications for pu-
blic health, as it can lead to more informed decision-making and the development of more effective 
policies aimed at controlling and preventing hepatitis outbreaks in these states.

The models obtained can be used to predict cases of the disease studied for each state, helping 
to understand current and future scenarios, allowing for a more assertive approach and develo-
pment of public health policies, since the impacts of maintaining current control and prevention 
measures can be better measured.  

Despite its potential, the MC approach has limitations. The accuracy of the predictions depends 
heavily on the quality and granularity of the data. In health systems with varied infrastructures, like 
those in Brazil, data may be incomplete, inconsistent, or biased, leading to challenges in building ro-
bust and reliable models. Furthermore, while Markov Chains can effectively model state transitions, 
they might oversimplify the underlying processes, especially in the presence of complex interdepen-
dencies between variables that are better captured by other methods like ARIMA or Bayesian models.

For future studies, it is recommended that this analysis be extended to other states and regions, as 
well as being broken down by type of virus, in order to help prevent and combat/prepare treatments 
for the types most associated with chronic or acute hepatitis, making it possible to reduce the num-
ber of cases and reduce this public health problem. It is also suggested that an approach be taken 
to determine, by means of the symptoms presented, the likelihood of a person having or contracting 
hepatitis, in order to implement targeted vaccination campaigns based on risk. 
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